Wednesday, 12 April 2017

How To Create A Moving Durchschnitt Chart In Excel

Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Wie berechnen Bewegungsdurchschnitte in Excel Excel Datenanalyse für Dummies, 2. Auflage Der Datenanalyse-Befehl bietet ein Werkzeug für die Berechnung von beweglichen und exponentiell geglätteten Mittelwerten in Excel. Angenommen, aus Gründen der Veranschaulichung, dass Sie die tägliche Temperaturinformation gesammelt haben. Sie wollen den dreitägigen gleitenden Durchschnitt berechnen 8212 der Durchschnitt der letzten drei Tage 8212 als Teil einer einfachen Wettervorhersage. Um die gleitenden Durchschnitte für diesen Datensatz zu berechnen, gehen Sie wie folgt vor: Um einen gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Daten tab8217s Datenanalyse. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste die Option Durchschnitt verschieben aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld Moving Average an. Identifizieren Sie die Daten, die Sie verwenden möchten, um den gleitenden Durchschnitt zu berechnen. Klicken Sie in das Eingabefeld Eingabebereich des Dialogfelds "Verschieben von Mittel". Dann identifizieren Sie den Eingabebereich, indem Sie entweder eine Arbeitsblattbereichsadresse eingeben oder mit der Maus den Arbeitsblattbereich auswählen. Ihr Bereichsreferenz sollte absolute Zellenadressen verwenden. Eine absolute Zellenadresse geht dem Spaltenbrief und der Zeilennummer mit Zeichen vor, wie bei A1: A10. Wenn die erste Zelle in Ihrem Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, markieren Sie das Kontrollkästchen Etiketten in der ersten Zeile. Vergewissern Sie sich im Textfeld Intervall, wie viele Werte in die gleitende Durchschnittsberechnung einbezogen werden sollen. Sie können einen gleitenden Durchschnitt mit einer beliebigen Anzahl von Werten berechnen. Standardmäßig verwendet Excel die letzten drei Werte, um den gleitenden Durchschnitt zu berechnen. Um festzulegen, dass eine andere Anzahl von Werten verwendet wird, um den gleitenden Durchschnitt zu berechnen, geben Sie diesen Wert in das Intervall-Textfeld ein. Sagen Sie Excel, wo die gleitenden Durchschnittsdaten platziert werden sollen. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsbereich zu identifizieren, in den Sie die gleitenden Durchschnittsdaten platzieren möchten. Im Beispiel des Arbeitsblatts wurden die gleitenden Durchschnittsdaten in den Arbeitsblattbereich B2: B10 eingefügt. (Optional) Geben Sie an, ob ein Diagramm angezeigt werden soll. Wenn Sie ein Diagramm wünschen, das die gleitenden durchschnittlichen Informationen aufgibt, markieren Sie das Kontrollkästchen Diagrammausgabe. (Optional) Geben Sie an, ob Standardfehlerinformationen berechnet werden sollen. Wenn Sie Standardfehler für die Daten berechnen möchten, markieren Sie das Kontrollkästchen Standardfehler. Excel setzt Standardfehlerwerte neben den gleitenden Mittelwerten. (Die Standardfehlerinformation geht in C2: C10.) Nachdem Sie die Angabe festgelegt haben, welche gleitenden durchschnittlichen Informationen Sie berechnen möchten und wo Sie es platzieren möchten, klicken Sie auf OK. Excel berechnet gleitende durchschnittliche Informationen. Hinweis: Wenn Excel nicht genügend Informationen hat, um einen gleitenden Durchschnitt für einen Standardfehler zu berechnen, legt er die Fehlermeldung in die Zelle. Sie können mehrere Zellen sehen, die diese Fehlermeldung als Wert anzeigen. Erstellen Sie einen Trend oder eine gleitende durchschnittliche Linie zu einem Diagramm In Excel Online können Sie Diagramme anzeigen, die Trendlinien oder gleitende durchschnittliche Linien haben, aber Sie werden nicht in der Lage sein, sie hinzuzufügen oder zu ändern . Wenn Sie die Excel-Desktop-Anwendung haben, können Sie die Schaltfläche Öffnen in Excel verwenden, um Ihre Arbeitsmappe zu öffnen, um Trendlinien hinzuzufügen oder zu ändern. Heres wie: Für Neuigkeiten über die neuesten Excel Online Updates, besuchen Sie die Microsoft Excel Blog. Für die gesamte Suite von Office-Anwendungen und - Dienstleistungen, versuchen Sie es oder kaufen Sie es im Büro. Vielen Dank für Ihr Feedback Danke für dein Feedback Es klingt wie es vielleicht hilfreich wäre, dich mit einem unserer Agenten zu verbinden. Chatten Sie mit einem Office-Support-Agenten. Geben Sie einen Trend oder eine gleitende durchschnittliche Zeile zu einem Diagramm an Betrifft: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Um Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm anzuzeigen. Du kannst eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorhersagen zu können. Zum Beispiel prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für zukünftige Verkäufe vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D-Diagramm hinzufügen, das nicht gestapelt ist, einschließlich Bereich, Balken, Spalte, Zeile, Lager, Streuung und Blase. Sie können keine Trendlinie zu einem gestapelten, 3-D, Radar, Kuchen, Oberfläche oder Donut-Diagramm hinzufügen. Fügen Sie eine Trendlinie hinzu Klicken Sie in Ihrem Diagramm auf die Datenreihe, zu der Sie eine Trendlinie hinzufügen möchten. Die Trendlinie startet am ersten Datenpunkt der gewünschten Datenreihe. Überprüfe die Trendline-Box. Um eine andere Art von Trendlinie zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Prognose Oder zwei Period Moving Average. Für weitere Trendlinien klicken Sie auf Weitere Optionen. Wenn Sie weitere Optionen wählen. Klicken Sie unter Trendline-Optionen auf die gewünschte Option im Format Trendline-Bereich. Wenn Sie Polynom wählen. Geben Sie im Feld Auftrag die höchste Leistung für die unabhängige Variable ein. Wenn Sie Moving Average auswählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden sollen, um den gleitenden Durchschnitt im Feld Periode zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) bei oder nahe 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-squared-Wert. Sie können diesen Wert auf Ihrem Diagramm anzeigen, indem Sie den R-quadratischen Wert auf dem Diagramm anzeigen (Format Trendline-Bereich, Trendline-Optionen). In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Zeile aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit einer stetigen Rate zunimmt oder abnimmt. Eine lineare Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate für eine Zeile zu berechnen: wobei m die Steigung ist und b der Zwischenpunkt ist. Die folgende lineare Trendlinie zeigt, dass der Umsatz der Verkäufe über einen Zeitraum von 8 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Anpassung der Linie an die Daten ist. Zeigt eine best-fit gekrümmte Linie, ist diese Trendlinie nützlich, wenn die Rate der Veränderung in den Daten steigt oder sinkt schnell und dann Ebenen aus. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem Festflächengebiet, wo die Population als Raum für die Tiere abnimmt. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Anpassung der Linie an die Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Schwankungen der Daten bestimmt werden oder wie viele Kurven (Hügel und Täler) in der Kurve erscheinen. Typischerweise hat eine Polynom-Trendlinie des Auftrags 2 nur einen Hügel oder ein Tal, ein Auftrag 3 hat ein oder zwei Hügel oder Täler, und ein Auftrag 4 hat bis zu drei Hügel oder Täler. Eine Polynom - oder Curvilinear-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wo b und Konstanten sind. Die folgende Reihenfolge 2 Polynom Trendline (ein Hügel) zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Zeilen gut an die Daten angepasst sind. Bei der Darstellung einer gekrümmten Linie ist diese Trendlinie für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens in 1-Sekunden-Intervallen. Sie können keine Power Trendline erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine Power-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Abstandsmessung zeigt die Entfernung in Metern nach Sekunden an. Die Power-Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Linie zu den Daten ist. Wenn man eine gekrümmte Linie anzeigt, ist diese Trendlinie sinnvoll, wenn Datenwerte steigen oder sinken. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, wie es altert. Beachten Sie, dass der R-Quadrat-Wert 0,990 ist, was bedeutet, dass die Linie die Daten fast perfekt passt. Moving Average Trendline Diese Trendlinie zeigt Datenschwankungen aus, um ein Muster oder einen Trend deutlicher zu zeigen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (gesetzt durch die Periodenoption), mittelt sie und verwendet den Mittelwert als Punkt in der Zeile. Wenn zum Beispiel die Periode auf 2 gesetzt ist, wird der Mittelwert der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Mittelwert des zweiten und dritten Datenpunktes wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie nutzt diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Serie, abzüglich der Nummer, die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis, sortiere die x-Werte, bevor du einen gleitenden Durchschnitt hinzufügst. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Anzahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft wurden.


No comments:

Post a Comment